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Nearest neighbour methods are one of the most widely used regression techniques
due to the simplicity of their implementation and their wide applicability. They
are one of the few approaches viable for regression on non-Euclidean manifolds
and infinite dimensional function spaces, which increasingly come up in
applications in engineering, data science, and other fields. However, currently,
proofs of consistency and rates of convergence are only available for Euclidean
domains. In this paper, we prove that nearest neighbour regression on general
metric spaces—which includes general manifolds and function spaces—is,
under minimal assumptions, universally uniformly L2-consistent, and present
convergence rates in terms of small ball probabilities of the regressor. We use
our general framework to derive explicit convergence rates for cases where the
regressor is finite-dimensional (in the Hausdorff sense) or a Gaussian random
function.
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1 Introduction
Consider a task where a random quantity Y is to be predicted from a related quantity X , based on a set of

training samples (x1, y1), . . . , (xn, yn). One approach called the k-nearest neighbour technique takes the

average over k of the training samples which are closest to a given observation X = x. As an example, consider a

streaming platform that collects user ratings for films they have watched in order to predict which other films

they are likely to enjoy. The platform needs a way of predicting the rating (in our notation, Y ) that a user would

give to a new film X based on previous ratings (x1, y1), . . . , (xn, yn). The k-nearest neighbour technique in

this setting would take the average of the ratings that the user assigned to the k previously watched films that are

closest to the new one based on genre, age rating, year of production, etc. In reality, the user’s rating will also

depend on external factors such as current mood, whether they watch the film together with a group, or the

quality of available snacks. The easiest way to model this is as random fluctuations. Hence Y is assumed to be

random rather than a fixed function of X . A good estimation procedure would then be expected to predict a

user’s rating of a film averaged over external factors. If this prediction becomes more accurate with an increasing

amount of training data, the estimator is called consistent. There are various notions that make this idea of

consistency mathematically precise—see [2] for a comprehensive list.

A vital part of theoretical research on nearest neighbour regression is proving that estimation is guaranteed

to be consistent under certain assumptions. Preferably, such a result also makes assertions about the speed

at which the estimator converges to the true function, called the rate of convergence. There are many results

available in this direction, but they are all concerned with the case where the domain of X is a subset of the
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Euclidean space Rd
[6, 9, 8, 17, 18], or where a more general state space is projected on Rd

by extraction of a finite

number of features [13]. Many classical applications can be modelled in such a way, including our earlier example

wherein each film could be represented by a vector of features (genre, age rating, production year, etc.). However,

many recent applications do not fit this assumption. Fuchs et al. [11] study applications of nearest neighbour

techniques on functional data in speech recognition and sensor technologies, in which case the domain of X is

an infinite-dimensional space of functions. Lang et al. [14] use regression in the context of 6D object tracking.

They use quaternions to describe rotations, which reside on a so-called manifold—a space that “locally looks

Euclidean” but generally cannot be identified with a subset of Rd
. The authors use Gaussian process regression,

but nearest neighbour techniques could be applied in the same context.

The most general setting in which nearest neighbour techniques can be applied would be the case where the

domain of X is a set with a notion of distance between objects called a metric space. More formally, a metric

on a set E is a symmetric function ρ : E × E → [0,∞), such that ρ(x, y) = 0 if and only if x = y, and

ρ(x, y) ≤ ρ(x, z) + ρ(z, y) for all x, y, z ∈ E. This includes Rd
with the Euclidean distance and general

manifolds. Function spaces can also be equipped with metrics. Several have been suggested and studied by Fuchs

et al. [11] in the context of nearest neighbour regression.
1

Nearest neighbour classification in this setting, that is, the case where Y takes values in {0, 1}, has been

studied in [4, 5, 7]. In this paper, we study regression, which is the more general case where Y is real-valued, and

establish consistency of nearest neighbour estimation under minimal assumptions. We give a general result that

applies to arbitrary metric spaces and show how these results can be used to obtain explicit convergence rates

in the case where X is finite-dimensional and in the infinite-dimensional case where X is a Gaussian random

function. To our knowledge, this makes the present paper the first to formally prove consistency of nearest

neighbour regression in the most general setting of arbitrary metric spaces.

We give a more precise summary of the type of consistency we show. To put our result in context with existing

literature, we introduce some important distinctions with regard to the sense in which the estimator converges

to the correct function—convergence can hold pointwise, i.e. individually on every point of the domain, versus

uniformly on certain subsets of it; and the convergence can be weak (convergence in probability), strong (almost

sure convergence), or in the Lp
-sense, which means that the difference of the estimator and the target function

vanishes in the probabilistic Lp
-norm. Both strong and Lp

-consistency imply weak consistency, but neither

implies the other. In the case of Euclidean domains, results on pointwise L2
-consistency were first presented

in [17], uniform Lp
-consistency is given in [18] and [8]. Uniform strong consistency was established in [9] and

[6]. In our setting, where X takes values in a general metric space, we prove uniform L2
-consistency, with

convergence rates in terms of small ball probabilities of X , under mild continuity assumptions and sufficient

integrability of Y , with no assumptions on the metric domain space or the distribution of X .

In Section 2, we introduce the general framework of the paper, recall some basic probabilistic notions, and

define the estimators. In Section 3, we present our main results, which we apply in Section 4 to derive convergence

rates in the cases where X is finite-dimensional or a Gaussian random function. The proofs for these results can

be found in Section 5.

1

They also consider semi-metrics, that is functions ρ : X × X → [0,∞) which are metrics except for the fact that there may be

x1, x2 ∈ X,x1 ̸= x2 with ρ(x1, x2) = 0. Note that in such cases any nearest neighbour estimator will, in general, not be

consistent: If ρ(x1, x2) = 0, then the estimator cannot distinguish between observations at x1 and x2, hence will always estimate

f̂(x1) = f̂(x2), which is wrong if the estimated function satisfies f(x1) ̸= f(x2). Semi-metrics generally perform worse than

true metrics for this reason but are often more computationally efficient. To trade off performance and efficiency, one often tries to

find a semi-metric which is as simple as possible while still being expected to satisfy f(x1) ≈ f(x2) whenever ρ(x1, x2) = 0.
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2 Preliminaries and Setup
We first introduce some notation. If f, g : N → [0,∞) are two functions, we write f = O(g) if there exists

K > 0 with f ≤ Kg, and we write f = o(g) or f ≪ g if there is αn ↓ 0 with f(n) = αng(n) for all n ∈ N.

We write f ∼ g if there is αn → 1 with f(n) = αng(n) for all n ∈ N.

Let (X,Y ) be a pair of random variables such that Y is real-valued, and X takes values in a metric space

(E, ρ). Denote the Borel σ-algebras on E and R by E and B respectively, and the underlying probability space

by (Ω,A,P). Assume that ∥Y ∥L2 < ∞, where ∥·∥Lp := E [|·|p]1/p for p ≥ 1.

2.1 Bayes Estimator
We recall some basic probabilistic notions, details on all of which can be found in [1]. If Z : Ω → R is an

integrable random variable, then the conditional expectation E [Z |X] of Z given X is the unique (up to modi-

fication on a P-null set) integrable, X−1(E)-measurable random variable for which E
[
E [Z |X]1{X∈A}

]
=

E
[
Z1{X∈A}

]
for all A ∈ E . Let (PY |X=x)x∈E be a conditional distribution of Y given X . That is,

PY |X=x(·) : B → [0, 1] is a probability measure on R for every x ∈ E, and x 7→ PY |X=x(B) is meas-

urable for every B ∈ B, and

P(X ∈ A, Y ∈ B) =

∫
A
PY |X=x(B)PX(dx),

for any A ∈ E and B ∈ B, where PX := P(X−1(·)) : E → [0, 1] denotes the law of X . Then, for any

measurable g : R → R, let

E [g(Y ) |X = x] :=

∫
R
g(y)PY |X=x(dy).

Denoting the left-hand side above by f(x), it is elementary to confirm that f(X) = E [g(Y ) |X]. Other

characteristics of Y , such as its variance, can also be expressed conditional on X = x by defining them in terms

of PY |X=x
instead of PY

.

For x ∈ E and k ∈ N, if ∥Y ∥Lk < ∞, define

mk(x) := E
[
Y k
∣∣∣X = x

]
, (1)

and put m := m1. Then, m(X) = E [Y |X], and m : E → R is the so-called Bayes estimator of Y given X ,

which minimises the mean squared error in the sense that, for any measurable m̃ : E → R,

E
[
|m(x)− Y |2

∣∣∣X = x
]
≤ E

[
|m̃(x)− Y |2

∣∣∣X = x
]

holds for PX
-almost all x ∈ E. Even though the Bayes estimator is optimal in the above sense, it is by no means

perfect. If we put ε := Y −m(X), then

Y = m(X) + ε,

where ε is a noise with E [ε |X] = 0 that describes the fluctuations of Y around m(X). A measure for the

strength of these fluctuations is the variance of the noise,

v(x) := V (ε |X = x) = V (Y |X = x) = m2(x)−m(x)2.
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By estimating v alongside m, one obtains a sense of the uncertainty associated with the estimation.

2.2 Nearest Neighbour Estimation
Suppose that a sequence (Xi, Yi), i ∈ N, of independent copies of (X,Y ) is defined on (Ω,A,P). Let

kn ∈ {1, . . . , n}, n ∈ N, be a non-decreasing sequence with kn → ∞ and kn/n → 0. We now define the

kn-nearest neighbour estimators. For fixed n ∈ N and x ∈ E, let (σ1, . . . , σn) be the (random) permutation

of (1, . . . , n) such that

ρ(Xσ1 , x) ≤ ρ(Xσ2 , x) ≤ . . . ≤ ρ(Xσn , x),

where, if several Xi have the same distance from x, they are ordered uniformly at random, independently of

all other quantities and choices. This way, (σ1, . . . , σn) is any of the n! permutations with equal probability.

Denote the inverse permutation by (Σ1, . . . ,Σn), that is, Σi =
∑n

j=1 j1{σj=i} is the position of Xi in the

ordered tuple (Xσ1 , . . . , Xσn). Then, in particular,

P (Σi ≤ k) =
k

n
, P (Σi ∨ Σj ≤ k) =

k(k − 1)

n(n− 1)
, (2)

whenever i, j, k ∈ {1, . . . , n}, i ̸= j, where x ∧ y := min(x, y) and x ∨ y := max(x, y) for x, y ∈ R.

Note that σi and Σi depend on n and x, so strictly speaking we should specify σ(i,n)(x) and Σ(i,n)(x), but

we omit either or both if they are clear from the context. For n ∈ N and k ∈ N, the kn-nearest neighbour

estimators of mk and v based on the first n observations are defined by

m̂
(n)
k (x) :=

1

kn

kn∑
i=1

Y k
σ(i,n)(x)

=
1

kn

n∑
i=1

Y k
i 1{Σ(i,n)(x)≤kn}, (3)

v̂(n)(x) :=
1

kn

kn∑
i=1

(
Yσi − m̂(n)(x)

)2
= m̂

(n)
2 (x)− m̂(n)(x)2, (4)

for x ∈ E, where m̂(n) := m̂
(n)
1 .

2.3 Small Ball Probabilities
We introduce some notation and elementary facts regarding small ball probabilities of X . For x ∈ E, ε, δ > 0,

define

px(δ) := P(X ∈ B(x, δ)), (5)

p−1
x (ε) := inf {δ ≥ 0: px(δ) ≥ ε} , (6)

where B(x, δ) = {y ∈ E : ρ(x, y) ≤ δ}. The support of X is the closed set

S(X) := {x ∈ E : ∀δ > 0: px(δ) > 0} .

Lemma 2.1. Let x ∈ E.

(i) px : [0,∞) → [0, 1] and p−1
x : [0, 1] → [0,∞) are increasing and respectively right- and left-continuous.

(ii) px(0) = P(X = x), p−1
x (0) = 0.

(iii) px(p
−1
x (ε)) ≥ ε, for all ε > 0.
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(iv) If x ∈ S(X), then p−1
x (ε) ↓ 0 as ε ↓ 0.

Proof. (i) Monotonicity is obvious and right-continuity of px is just continuity from above of PX
. Let

0 < εn ↑ ε0, and put δn := p−1
x (εn), n ∈ N0. Then, 0 ≤ δn ↑ δ for some 0 ≤ δ ≤ δ0 (because

δn ≤ δ0 for all n ∈ N). Hence it suffices to show that δ ≥ δ0, that is, that px(δ) ≥ ε0. But this is clear

because px(δ) ≥ px(δn) ≥ εn ↑ ε0.

(ii) Clear from the definitions.

(iii) Follows from Eq. (6) and right-continuity of px.

(iv) If x ∈ S(X), then px(δ) > 0 for all δ > 0. Hence, for every δ > 0 there is ε > 0 with px(δ) ≥ ε and

thus p−1
x (ε) ≤ δ.

3 Main Results
The following two theorems are our main results. Recall the definitions of the moments mk (k ∈ N) of Y given

X , and of the nearest neighbour estimator m̂
(n)
k of mk based on the first n observations (see Eqs. (1) and (3)).

Also, recall that we assume a sequence (kn)n∈N, kn ∈ {1, . . . , n} with kn → ∞ and kn/n → 0 to be given.

We call a function h : E → R γ-Hölder continuous at x ∈ E for γ ∈ (0, 1] if there are c, δ > 0 such that

|h(y)− h(z)| ≤ cρ(y, z)γ for all y, z ∈ B(x, δ).

Theorem 3.1. Let k ∈ N. Suppose there exists p > 2k such that ∥Y ∥Lp < ∞, that mk is continuous, and that
m2k is locally bounded. In this case, the following statements hold:

(i) If C ⊂ S(X) is compact, then m̂
(n)
k (·) L2

−→ mk(·) uniformly on C . That is,

sup
x∈C

∥∥∥m̂(n)
k (x)−mk(x)

∥∥∥
L2

→ 0, n → ∞.

(ii) If x ∈ S(X) and mk is γ-Hölder continuous at x for some γ ∈ (0, 1], then, for any sequence 0 < αn =
o(n/kn), there is a c > 0 such that∥∥∥m̂(n)

k (x)−mk(x)
∥∥∥2
L2

≤ c

(
1

kn
+ p−1

x

(
(1 + αn)

kn
n

)γ

+ n2 exp

(
−kn
2q

α2
n

1 + αn

))
, (7)

where q = p
p−k ∈ (1, 2). In particular,

∥∥∥m̂(n)
k (x)−mk(x)

∥∥∥2
L2

≤ c

(
1

kn
+ p−1

x

(
2kn
n

)γ

+ n2e−kn/8

)
.

Theorem 3.2. Suppose there is p > 4 such that ∥Y ∥Lp < ∞, and that m,m2 are continuous and m4 is locally

bounded. Then, v̂(n)(·) L1

−→ v(·) as n → ∞, uniformly on compact subsets of S(X).

4 Examples
Before moving on to the proofs, we demonstrate how Theorem 3.1 can be used to derive explicit convergence

rates in the cases where X is finite-dimensional (in the following sense), or a Gaussian random function.
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Definition 4.1. Let s > 0. We say that X is at most s-dimensional at x ∈ E if there exists c > 0 and

δ0 ∈ (0, 1) such that

px(δ) ≥ cδs, δ ∈ (0, δ0). (8)

We say that X is at most s-dimensional if X is at most s-dimensional at every x ∈ S(X).

Remark 4.2. (i) The reason we call X ‘at most’ s-dimensional in Definition 4.1 is that if Eq. (8) holds for

some s > 0, then it also holds for all s′ > s. One might thus be tempted to define the dimension sX of

X as the infimum over all s for which Eq. (8) holds, but in this case Eq. (8) does not in general also hold

for sX .

(ii) Suppose that E has Hausdorff dimension s > 0, and that there are measurable sets En ↑ E such that the

Hausdorff measure Hs : B(E) → [0,∞] satisfies Hs(En) ∈ (0,∞) for all n ∈ N. If X has a positive,

continuous density with respect to Hs
(which in this case is a sort of uniform measure on E) then X

is at most s-dimensional in the sense of Definition 4.1. This includes the case of absolutely continuous

random variables X on Rd
. See [10] for details.

Theorem 4.3. Let k ∈ N, x ∈ S(X), suppose that mk is γ-Hölder continuous at x for some γ ∈ (0, 1], and that
X is at most s-dimensional at x. Then, if kn ≫ log n,

∥∥∥m̂(n)
k (x)−mk(x)

∥∥∥2
L2

= O

(
1

kn
+

(
kn
n

)γ/s
)
. (9)

If kn, n ∈ N, optimises this bound, then
kn ∼ cn

1
1+s/γ ,

where c =
(

s
γ

)s/(s+γ)
. In that case, and in fact whenever kn ∼ c′n

1
1+s/γ for some c′ > 0, then∥∥∥m̂(n)

k (x)−mk(x)
∥∥∥
L2

= O
(
n
− 1

2+2s/γ

)
. (10)

Note that we only considered kn ≫ log n above, but we know that kn = O(log n) cannot transform Eq. (7)

into a better bound than Eq. (10), as it would be no smaller than
1
kn

≥ 1
C logn ≫ n−1/(2+2s/γ)

.

Remark 4.4. (i) The assumptions of Theorem 4.3 include as domains for X manifolds that cannot be

embedded into Rd
, as well as more general fractal spaces. For example, this includes applications that

regress on quaternions, as Lang et al. [14] have previously done in the context of 6D object tracking.

(ii) Theorem 4.3 includes the case where s = d ∈ N and E = Rd
. In this setting, known results assert a

slightly faster convergence rate of O(n−1/(2+s/γ)), albeit under stronger regularity conditions such as

sufficient differentiability of m [2], or with a weaker notion of convergence [12]. Still, it is reasonable

to assume that a refinement of the arguments presented here yields the aforementioned stronger rate of

convergence also in this more general setting.

We now turn to the case where X is a centred Gaussian process on [0, 1]. That is, we assume that X =
(Xt)t∈[0,1] takes values in C([0, 1],R)—which is a complete and separable normed space when equipped with

the supremum norm—and that for any n ∈ N and t1, . . . , tn ∈ [0, 1], (Xt1 , . . . , Xtn) has an n-dimensional

centred Gaussian distribution. In this case, X is fully determined by its covariance function or kernel

K(t, s) := E [XtXs] , t, s ∈ [0, 1]. (11)
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We suppose that there is β > 0 such that for every t, s ∈ [0, 1],

|K(t, s)−K(t, t)| ≤ c |t− s|2β , (12)

for some constant c > 0. For example, if K is Lipschitz continuous, then Eq. (12) is satisfied with β = 1/2.

One can think of β as a measure of the regularity of X .

The reproducing kernel Hilbert space (RKHS) or Cameron–Martin space H of X is a dense linear subspace of

S(X) with a scalar product that turns H into a Hilbert space, see [3] for details.

Remark 4.5. Similar to the universality of the Gaussian distribution in the context of naturally occurring,

real-valued data, Gaussian processes are commonly used to model functional data. The following are two of the

most commonly used kernels:

(i) The exponential kernel is defined by

K(t, s) = e−|t−s|/σ, t, s ∈ [0, 1],

for some σ > 0. In this case β = 1/2 and H = C1([0, 1]).

(ii) The squared exponential kernel is defined by

K(t, s) = e−(t−s)2/(2σ2), t, s ∈ [0, 1],

where σ > 0. In this case β = 1, and H contains C∞([0, 1]).

In both cases, σ determines the length scale of X . The squared exponential kernel is often used if the data is

expected to be smooth, while the exponential kernel tends to work well for more ragged functions. A discussion

of a variety of kernels in the context of Gaussian process regression can be found in section 4.2.1 of [16].

Theorem 4.6. Let k ∈ N, x ∈ H, and suppose that mk is γ-Hölder continuous at x for some γ ∈ (0, 1]. Then,

∥∥∥m̂(n)
k (x)−mk(x)

∥∥∥2
L2

= O

(
1

kn
+ log

(
n

kn

)−γβ
)
. (13)

If kn ∈ N optimises this bound, then
kn ∼ 1

γβ (log n)1+γβ .

In that case, and in fact whenever (log n)γβ ≪ kn = O(na) for some a ∈ (0, 1), then∥∥∥m̂(n)
k (x)−mk(x)

∥∥∥
L2

= O
(
(log n)−γβ/2

)
. (14)

Remark 4.7. (i) The convergence rate obtained in Theorem 4.6 seems rather slow at first glance, but consid-

ering that the optimal rate for nearest neighbour estimation in Rr
is O(n−1/(2+r/γ)), and that function

spaces such as C([0, 1],R) are infinite-dimensional, it is not surprising that the convergence rate is slower

than n−c
for any c > 0. It is also noteworthy that although the bound in Eq. (13) is optimised by a

logarithmic kn, its asymptotic form Eq. (14) remains unchanged through a wide range of values for kn,

including kn ∼ na
for any a ∈ (0, 1). A possible direction for future work could aim for lower bounds

on convergence rates in the functional setting which may lead to further insights regarding the optimal

choice for kn.
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(ii) These arguments can be generalised to Gaussian processes in C([0, 1]d,R) for d ∈ N. In that case,

the statements of Lemma 5.9 and Theorem 4.6 remain true with β replaced by β/d. In particular, the

convergence rates are improved by higher regularity ofX andmk (i.e. large β and γ), and small dimension

d.

(iii) The above can readily be extended to non-centred Gaussian processes X by considering the centred

process X −m, where m(·) = E [X(·)] is the mean function of X .

5 Proofs
Recall Section 2.2, in particular the fact that we assume a sequence kn ∈ {1, . . . , n}, n ∈ N, to be given that

satisfies kn → ∞ and kn/n → 0. Write ρi := ρi(x) := ρ(Xi, x) for x ∈ E and i ∈ N, where x is omitted if

clear from context. For n ∈ N and F ⊂ E

Nn(F ) := |{i ∈ [n] : Xi ∈ F}| , Nn(x, δ) := Nn(B(x, δ)),

where [n] = {1, . . . , n}. The following two lemmas show that, for fixed δ > 0 and x ∈ E, it is exponentially

likely that all of the kn closest Xi’s lie inside B(x, δ).

Lemma 5.1. Let n ∈ N, and F ⊂ E. If pF := P(X ∈ F ) > kn/n, then

P(Nn(F ) < kn) ≤ exp

(
− n

2pF

(
pF − kn

n

)2
)
.

If δ > 0 is fixed, and either A = B(x0, δ/2) with x0 ∈ S(X), or A ⊂ S(X) is compact, then there exists
c > 0 such that

P(∃x ∈ A : Nn(x, δ) < kn) = O
(
e−cn

)
.

Proof. EachXi falls intoF independently with probability pF , soNn(F ) ∼ Bin(n, pF ). A standard Chernoff

bound yields, since npF > kn,

P(Nn(F ) < kn) = P
(

Bin(n, pF ) < npF

(
1−

(
1− kn

npF

)))
≤ exp

(
−npF

2

(
1− kn

npF

)2
)

= exp

(
− n

2pF

(
pF − kn

n

)2
)
.

If A = B(x0, δ/2) for some x0 ∈ S(X), then B(x0, δ/2) ⊂ B(x, δ) for all x ∈ A, and p′ := P(X ∈
B(x0, δ/2)) > 0, so by what we have already shown,

P(∃x ∈ A : Nn(x, δ) < kn) ≤ P (Nn(x0, δ/2) < kn)

≤ exp

(
− n

2p′

(
p′ − kn

n

)2
)

= O
(
e−np′/8

)
,
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where we used in the last step that
kn
n ≤ p′

2 for sufficiently large n ∈ N. The claim for compact A ⊂ S(X)
follows because A can be covered in finitely many balls of the form B(x, δ/2) with x ∈ A.

Lemma 5.2. If n ∈ N, x ∈ E, δ > 0, and I ⊂ [n], |I| ≤ kn, then

P

(
∃i ∈ I : ρi ≥ δ

∣∣∣∣∣∨
i∈I

Σi ≤ kn

)
≤ P(Nn(x, δ) < kn).

Proof. We assume I = {1}, the general proof merely requires more notation. Denote by Sn the set of per-

mutations of [n], put Aπ := {(σ1, . . . , σn) = π} for π ∈ Sn, and abbreviate B := {Nn(x, δ) < kn}.

Then,

P(B ∩Aπ) = P (Less than kn of the (Xi)
n
i=1 lie in B(x, δ), Aπ)

= P
(

Less than kn of the (Xπ(i))
n
i=1 lie in B(x, δ), Aπ

)
= P (Less than kn of the (Xi)

n
i=1 lie in B(x, δ), Aid)

= P(B ∩Aid),

where id := (1, . . . , n) ∈ Sn, and we used in the third step that (X1, . . . , Xn) and (Xπ(1), . . . , Xπ(n)) are

equal in distribution. Hence, for any π ∈ Sn,

P(B) =
∑
τ∈Sn

P(B ∩Aτ ) =
∑
τ∈Sn

P(B ∩Aπ) = n!P(B ∩Aπ).

Now observe that {Σ1 ≤ kn} =
⋃
· π∈Sn
π(1)≤kn

Aπ , so

P (B ∩ {Σ1 ≤ kn}) =
∑
π∈Sn

π(1)≤kn

P(B ∩Aπ) = kn(n− 1)! · 1

n!
P(B) =

kn
n
P(B)

= P(Σ1 ≤ kn)P(B),

where we used Eq. (2) in the last step. Finally, note that {ρ1 ≥ δ} ∩ {Σ1 ≤ kn} ⊂ B ∩ {Σ1 ≤ kn}, so

P(B)P(Σ1 ≤ kn) = P(B,Σ1 ≤ kn) ≥ P(ρ1 ≥ δ,Σ1 ≤ kn).

Dividing by P(Σ1 ≤ kn) finishes the proof.

Theorem 3.2 will turn out to be an immediate corollary from Theorem 3.1. The idea behind the proof of the

latter is to show that E
[
m̂

(n)
k (·)

]
goes to mk(·) and V

(
m̂(n)(·)

)
vanishes as n → ∞. We begin by proving

some lemmas.

Lemma 5.3. If k ∈ N and ∥Y ∥Lk < ∞, then

E
[
m̂

(n)
k (x)

]
= E [mk(X1) |Σ1(x) ≤ kn] , n ∈ N, x ∈ E.
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Proof. We may assume k = 1 (otherwise consider Ỹ := Y k
). Let n ∈ N and x ∈ E. Then, by Eq. (3),

E
[
m̂(n)(x)

]
=

1

kn

n∑
j=1

E
[
Yj1{Σj(x)≤kn}

]
=

n

kn
E
[
Y11{Σ1(x)≤kn}

]
.

Using the independence of all the (Xi, Yi) and basic properties of conditional expectation,

E
[
Y11{Σ1(x)≤kn}

]
= E

[
E
[
Y11{Σ1(x)≤kn}

∣∣X1, . . . , Xn

]]
= E

[
E [Y1 |X1, . . . , Xn]1{Σ1(x)≤kn}

]
= E

[
m(X1)1{Σ1(x)≤kn}

]
=

kn
n
E [m(X1) |Σ1(x) ≤ kn] ,

where we used Eq. (2) in the last step.

If h : E → R and A ⊂ E, we write ∥h∥A := supx∈A |h(x)|.

Lemma 5.4. Let k ∈ N. Suppose that there exists p > k with ∥Y ∥Lp < ∞, and put q := p
p−k . Let δ > 0.

(i) For x ∈ E and n ∈ N,

E
[
|mk(X1)−mk(x)|1{ρ1≥δ}

∣∣Σ1 ≤ kn
]
≤ (n ∥Y ∥Lp + |mk(x)|)P (Nn(x, δ) < kn)

1/q ,

(ii) For x ∈ E and n ∈ N,

E
[∣∣mk(X1)mk(X2)−mk(x)

2
∣∣1{ρ1∨ρ2≥δ}

∣∣Σ1 ∨ Σ2 ≤ kn
]

≤
(
n2 ∥Y ∥2Lp + |mk(x)|2

)
P (Nn(x, δ) < kn)

1/q .

For fixed δ > 0, if A ⊂ E satisfies ∥mk∥A < ∞ and is either a ball of radius δ/2 with centre in S(X) or
A ⊂ S(X) is compact, then both bounds vanish uniformly on A as n → ∞.

Proof. We may assume that k = 1 (otherwise consider Ỹ := Y k
and p̃ := p/k > 1). Fix δ > 0, and letx ∈ E

and n ∈ N.

(i) Abbreviate A := {Σ1(x) ≤ kn}, and observe that

E
[
|m(X1)−m(x)|1{ρ(X1,x)≥δ}

∣∣A]
≤ E

[
|m(X1)|1{ρ(X1,x)≥δ}

∣∣A]+ |m(x)|P (ρ(X1, x) ≥ δ |A)︸ ︷︷ ︸
≤P(ρ(X1,x)≥δ |A)1/q

.
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Since
1
q +

1
p = 1, Hölder’s inequality gives

E
[
|m(X1)|1{ρ(X1,x)≥δ}

∣∣A] = E
[
|m(X1)|1{ρ(X1,x)≥δ}∩A

]
P(A)

≤ E [|m(X1)|p]1/p
P(ρ(X1, x) ≥ δ, A)1/q

P(A)

= E [|E [Y1 |X1]|p]1/p P(A)1/q−1P (ρ(X1, x) ≥ δ |A)1/q

≤ E [E [|Y1|p |X1]]
1/p
(

n

kn

)1−1/q

P (ρ(X1, x) ≥ δ |A)1/q

≤ n ∥Y1∥Lp P (ρ(X1, x) ≥ δ |A)1/q ,

where we used Jensen’s inequality and Eq. (2) in the penultimate step. Finally, ∥Y1∥Lp = ∥Y ∥Lp , and

P (ρ(X1, x) ≥ δ |A) ≤ P(Nn(x, δ) < kn) by Lemma 5.2.

(ii) Abbreviate A := {Σ1(x) ∨ Σ2(x) ≤ kn}. Then,

E
[∣∣m(X1)m(X2)−m(x)2

∣∣1{ρ1∨ρ2≥δ}
∣∣A]

≤ E
[
|m(X1)m(X2)|1{ρ1∨ρ2≥δ}

∣∣A]︸ ︷︷ ︸
(∗)

+ |m(x)|2 P (ρ1 ∨ ρ2 ≥ δ |A)︸ ︷︷ ︸
≤P(ρ1∨ρ2≥δ |A)1/q

.

Hölder’s inequality gives

(∗) = 1

P(A)
E
[
|m(X1)m(X2)|1{ρ1∨ρ2≥δ}∩A

]
≤ E [|m(X1)m(X2)|p]1/p

P (ρ1 ∨ ρ2 ≥ δ, A)1/q

P(A)
= E [|m(X)|p]2/p P(A)1/q−1P (ρ1 ∨ ρ2 ≥ δ |A)1/q

≤ ∥Y ∥2Lp

(
n(n− 1)

kn(kn − 1)

)1−1/q

P (ρ1 ∨ ρ2 ≥ δ |A)1/q

≤ n2 ∥Y ∥2Lp P (ρ1 ∨ ρ2 ≥ δ |A)1/q ,

where we used Eq. (2) and that X1 and X2 are independent and equal in distribution to X . Lemma 5.2

finishes the argument.

For fixed δ > 0, if A ⊂ E satisfies ∥m∥A < ∞ and is either a ball of radius δ/2 with centre in S(X) or

A ⊂ S(X) is compact, then Lemma 5.1 implies that both bounds vanish uniformly on A as n → ∞.

Lemma 5.5. Let k ∈ N, and suppose there is p > k with ∥Y ∥Lp < ∞. Then, for any x0 ∈ E and δ > 0,

lim
n→∞

(
sup

x∈B(x0,δ)

∣∣∣E [m̂(n)
k (x)

]∣∣∣) ≤ ∥mk∥B(x0,3δ)
.

In particular, if mk is locally bounded, then so is supn∈N
∣∣∣E [m̂(n)

k (·)
]∣∣∣.
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Proof. We may assume k = 1. Let x0 ∈ E, δ > 0, and abbreviate An(·) :=
{
Σ(1,n)(·) ≤ kn

}
. If

∥m∥B(x0,3δ)
= ∞, there is nothing to show, hence, we assume otherwise. Then, by Lemma 5.3,

sup
x∈B(x0,δ)

∣∣∣E [m̂(n)(x)
]∣∣∣ = sup

x∈B(x0,δ)

∣∣E [m(X1)(1{ρ1<2δ} + 1{ρ1≥2δ})
∣∣An(x)

]∣∣
≤ ∥m∥B(x0,3δ)

+ sup
x∈B(x0,δ)

E
[
|m(X1)|1{ρ1≥2δ}

∣∣An(x)
]
.

By Lemmas 5.1 and 5.4, the latter summand vanishes as n → ∞.

Proposition 5.6. Let k ∈ N, suppose there exists p > k with ∥Y ∥Lp < ∞, and put q := p
p−k .

(i) If mk is continuous, then E
[
m̂

(n)
k (·)

]
→ mk(·) uniformly on compact subsets of S(X).

(ii) If x ∈ S(X) and mk is γ-Hölder continuous at x for some γ ∈ (0, 1], then, for any sequence 0 < αn =
o(n/kn),∣∣∣E [m̂(n)

k (x)
]
−mk(x)

∣∣∣ = O

(
p−1
x

(
(1 + αn)

kn
n

)γ

+ n exp

(
− α2

n

1 + αn

kn
2q

))
.

Proof. Assume k = 1 and S(X) = E (otherwise consider Ỹ := Y k
, p̃ := p/k > 1, and Ẽ := S(X)).

Abbreviate A := {Σ1(x) ≤ kn} (n and x will be clear from context). If x ∈ E, and n ∈ N, then Lemma 5.3

implies that, for any δ > 0,∣∣E [m̂(n)(x)
]
−m(x)

∣∣ = |E [m(X1)−m(x) |A]|

≤ E
[
|m(X1)−m(x)|1{ρ(X1,x)<δ}

∣∣A]
+ E

[
|m(X1)−m(x)|1{ρ(X1,x)≥δ}

∣∣A] .
(15)

(i) If C ⊂ E is compact, then, by continuity of m, for any ε > 0 there exists some δ > 0 such that

|m(x)−m(x′)| < ε whenever x ∈ C and x′ ∈ E with ρ(x, x′) < δ, so that, for such δ, the former

summand on the right-hand side (RHS) of Eq. (15) is at most ε for any x ∈ C . The latter summand

vanishes uniformly on C as n → ∞ by Lemmas 5.1 and 5.4 and since ∥m∥C < ∞ by continuity of m.

Hence,

lim
n→∞

(
sup
x∈C

∣∣∣E [m̂(n)(x)
]
−m(x)

∣∣∣) ≤ ε,

for any ε > 0.

(ii) Suppose that x ∈ E and that there exist γ ∈ (0, 1] and c1, δ0 > 0 such that |m(y)−m(z)| ≤
c1ρ(y, z)

γ
for all y, z ∈ B(x, δ0). Then, for any n ∈ N and 0 < δ < δ0 with px(δ) >

kn
n , Eq. (15)

and Lemmas 5.1 and 5.4 imply∣∣∣E [m̂(n)(x)
]
−m(x)

∣∣∣ ≤ c1δ
γ + (|m(x)|+ n ∥Y ∥Lp)P (Nn(x, δ) < kn)

1/q

≤ c1δ
γ + (|m(x)|+ n ∥Y ∥Lp) exp

(
− n

2qpx(δ)

(
px(δ)−

kn
n

)2
)
,
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where q = p
p−1 ∈ (1,∞). Let (αn) ∈ (0,∞)N be such that αn = o(n/kn), so that 0 < εn :=

(1 + αn)
kn
n → 0. Then, by Lemma 2.1, 0 < δn := p−1

x (εn) < δ0 for large enough n ∈ N, and

px(δn) ≥ εn > kn/n. Thus, for large enough n ∈ N,

∣∣E [m̂(n)(x)
]
−m(x)

∣∣ ≤ c1δ
γ
n + 2n ∥Y ∥Lp exp

(
− n

2qεn

(
εn − kn

n

)2
)

= c1p
−1
x

(
(1 + αn)

kn
n

)γ

+ 2n ∥Y ∥Lp exp

(
−kn
2q

α2
n

1 + αn

)
,

which implies (ii).

Proposition 5.7. Let k ∈ N, and suppose there exists p > 2k with ∥Y ∥Lp < ∞, and that mk is continuous and
m2k is locally bounded. Put q := p

p−k .

(i) V
(
m̂

(n)
k (·)

)
→ 0 uniformly on compact subsets of S(X),

(ii) If x ∈ S(X) and mk is γ-Hölder continuous at x for some γ ∈ (0, 1], then, for any sequence 0 < αn =
o(n/kn),

V
(
m̂

(n)
k (x)

)
= O

(
1

kn
+ p−1

x

(
(1 + αn)

kn
n

)γ

+ n2 exp

(
−kn
2q

α2
n

1 + αn

))
.

Proof. We may again assume k = 1 and S(X) = E. Let x ∈ E and n ∈ N. Then,

E
[
m̂(n)(x)2

]
=

1

k2n

n∑
i,j=1

E
[
YiYj1{Σi(x)≤kn,Σj(x)≤kn}

]
=

1

k2n

( n∑
i=1

E
[
Y 2
i 1{Σi(x)≤kn}

]
+ n(n− 1)E

[
Y1Y21{Σ1(x)≤kn,Σ2(x)≤kn}

] )
=

1

kn
E
[
m̂

(n)
2 (x)

]
+

n(n− 1)

k2n
E
[
Y1Y21{Σ1(x)≤kn,Σ2(x)≤kn}

]
.

(16)

Conditioning on X1, X2 in the second summand, and using Eq. (2) yields

E
[
Y1Y21{Σ1(x)∨Σ2(x)≤kn}

]
= E

[
m(X1)m(X2)1{Σ1(x)∨Σ2(x)≤kn}

]
=

kn(kn − 1)

n(n− 1)
E [m(X1)m(X2) |Σ1(x) ∨ Σ2(x) ≤ kn] ,

which we combine with Eq. (16) to obtain, abbreviating A := An(x) := {Σ1(x) ∨ Σ2(x) ≤ kn},

E
[
m̂(n)(x)2

]
=

1

kn
E
[
m̂

(n)
2 (x)

]
+

(
1− 1

kn

)
E [m(X1)m(X2) |A] .
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We conclude that

V
(
m̂(n)(x)

)
= E

[
m̂(n)(x)2

]
− E

[
m̂(n)(x)

]2
≤

(∗1)︷ ︸︸ ︷∣∣∣∣E [m̂(n)(x)
]2

−m(x)2
∣∣∣∣

+
∣∣E [m(X1)m(X2) |A]−m(x)2

∣∣︸ ︷︷ ︸
(∗2)

+
1

kn

(∣∣∣E [m̂(n)
2 (x)

]∣∣∣+ |E [m(X1)m(X2) |A]|
)

︸ ︷︷ ︸
(∗3)

, (17)

where we introduced m(x)2 using the triangle inequality. Put ω(m,A) := supy,z∈A |m(y)−m(z)| for

A ⊂ E. Then, whenever δ > 0 and x1, x2 ∈ B(x, δ),∣∣m(x1)m(x2)−m(x)2
∣∣ = ∣∣m(x1)m(x2)−m(x1)m(x) +m(x1)m(x)−m(x)2

∣∣
≤ |m(x1)| |m(x2)−m(x)|+ |m(x)| |m(x1)−m(x)|
≤ 2 ∥m∥B(x,δ) ω(m,B(x, δ)).

(18)

Hence, and by Lemma 5.4, for any δ > 0,

(∗2) ≤ E
[∣∣m(X1)m(X2)−m(x)2

∣∣ (1{ρ1∨ρ2≥δ} + 1{ρ1∨ρ2<δ}
) ∣∣A]

≤
(
n2 ∥Y ∥2Lp + |m(x)|2

)
P (Nn(x, δ) < kn)

1/q

+ 2 ∥m∥B(x,δ) ω(m,B(x, δ)),

(19)

where q = p
p−1 ∈ (1, 2).

(i) Fix a compact set C ⊂ S(X), and let ε > 0. Since C is compact, there is δ > 0 such that ∥m∥B(x,δ) ≤
∥m∥C + 1 and ω(m,B(x, δ)) ≤ ε for all x ∈ C . Together with Eq. (19) and Lemma 5.1, this implies

lim
n→∞

(
sup
x∈C

(∗2)
)
≤ 2(∥m∥C + 1)ε

for all ε > 0, so (∗2) vanishes uniformly on C . In particular,

sup
n∈N,x∈C

|E [m(X1)m(X2) |An(x)]| < ∞,

which together with Lemma 5.5 implies that (∗3) also vanishes uniformly on C , and (∗1) does the same

by Proposition 5.6.

(ii) Suppose thatx ∈ E and γ ∈ (0, 1], δ0, c1 > 0 are such thatω(m,B(x, δ)) ≤ c1δ
γ

for all δ ∈ (0, δ0),

so by Eq. (19) and Lemma 5.1, for any δ ∈ (0, δ0),

(∗2) ≤ 2c1 ∥m∥B(x,δ) δ
γ +

(
n2 ∥Y ∥2Lp + |m(x)|2

)
exp

(
− n

2qpx(δ)

(
px(δ)−

kn
n

)2
)
.

Now let (αn) ∈ (0,∞)N be such that αn = o(n/kn), so that 0 < εn := (1 + αn)
kn
n → 0. Then, by

Lemma 2.1, 0 < δn := p−1
x (εn) < δ0 for large enough n ∈ N, and px(δn) ≥ εn > kn/n. Thus, for
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large enough n ∈ N,

(∗2) ≤ 2c1 ∥m∥B(x,δn)
δγn +

(
n2 ∥Y ∥2Lp + |m(x)|2

)
exp

(
− n

2qεn

(
εn − kn

n

)2
)

= O

(
p−1
x

(
(1 + αn)

kn
n

)γ

+ n2 exp

(
−kn
2q

α2
n

1 + αn

))
.

We have shown in (i) that E [m(X1)m(X2) |An(x)] → m(x)2 as n → ∞, and, by Lemma 5.5,

limn→∞

∣∣∣E [m̂(n)
2 (x)

]∣∣∣ ≤ m2(x), so

(∗3) ≤ (1 + o(1))
m2(x) +m(x)2

kn
= O

(
1

kn

)
.

Finally, Proposition 5.6 and Lemma 5.5 imply

(∗1) =
∣∣∣(E [m̂(n)(x)

]
+m(x)

)(
E
[
m̂(n)(x)

]
−m(x)

)∣∣∣
= O

(
p−1
x

(
(1 + αn)

kn
n

)γ

+ n exp

(
−kn
2q

α2
n

1 + αn

))
.

Theorem 3.1 is now an easy consequence of Propositions 5.6 and 5.7.

Proof of Theorem 3.1. As always we assume k = 1 and E = S(X). If x ∈ E, then∥∥∥m̂(n)(x)−m(x)
∥∥∥
L2

≤
∥∥∥m̂(n)(x)− E

[
m̂(n)(x)

]∥∥∥
L2

+
∥∥∥E [m̂(n)(x)

]
−m(x)

∥∥∥
L2

=

√
E
[(
m̂(n)(x)− E

[
m̂(n)(x)

])2]
+
∣∣∣E [m̂(n)(x)

]
−m(x)

∣∣∣
=
√

V
(
m̂(n)(x)

)
+
∣∣∣E [m̂(n)(x)

]
−m(x)

∣∣∣ .
This bound vanishes uniformly on compact sets by Propositions 5.6 and 5.7, which proves (i). Now suppose

x ∈ E and γ ∈ (0, 1], c1, δ0 > 0, such that |m(y)−m(z)| ≤ c1ρ(y, z)
γ

for all y, z ∈ B(x, δ), and fix a

sequence 0 < αn = o(n/kn). Then, Proposition 5.7(ii) and Proposition 5.6(ii) respectively give asymptotic

bounds V(m̂(n)(x)) = O((v)) and

∣∣E [m̂(n)(x)
]
−m(x)

∣∣ = O((e)). A comparison yields (e) = O((v)),

and since both go to zero as n → ∞, (e) = o(
√

(v)). Thus,∥∥∥m̂(n)(x)−m(x)
∥∥∥
L2

= O
(√

(v) + (e)

)
= O(

√
(v)).

The final assertion follows by choosing αn = 1, n ∈ N, and because q < 2 (since
1
q +

1
p = 1 and p > 2).

Proof of Theorem 3.2. Let C ⊂ S(X) be compact. Recall from Eq. (4) that v̂(n)(·) = m̂
(n)
2 (·)− m̂(n)(·)2, so,

for x ∈ E,∥∥∥v̂(n)(x)− v(x)
∥∥∥
L1

≤
∥∥∥m̂(n)

2 (x)−m2(x)
∥∥∥
L1

+
∥∥∥m̂(n)(x)2 −m(x)2

∥∥∥
L1

≤
∥∥∥m̂(n)

2 (x)−m2(x)
∥∥∥
L2

+
∥∥∥m̂(n)(x) +m(x)

∥∥∥
L2

∥∥∥m̂(n)(x)−m(x)
∥∥∥
L2

.
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where we used the Hölder inequality on both summands in the second step. Applying Theorem 3.1 with

k = 1 and k = 2 gives m̂(n)(·) L2

−→ m(·) and m̂
(n)
2 (·) L2

−→ m2(·) uniformly on C . In particular,

supn∈N,x∈C
∥∥m̂(n)(x)

∥∥
L2 < ∞, so the bound above vanishes uniformly on C .

We close with the proofs of Theorems 4.3 and 4.6.

Proof of Theorem 4.3. Assume k = 1 and S(X) = E. By assumption, there are c1, δ0 > 0 such that px(δ) ≥

c1δ
s

for all δ ∈ (0, δ0), and thus p−1
x (ε) ≤

(
ε
c1

)1/s
for ε ∈ (0, c1δ

s
0). Hence, and by Theorem 3.1, for any

0 < αn = o(n/kn),

∥∥∥m̂(n)(x)−m(x)
∥∥∥2
L2

= O

(
1

kn
+

(
(1 + αn)

kn
n

)γ/s

+ n2 exp

(
−kn

4

α2
n

1 + αn

))
. (20)

Choose αn > 0 such that
kn
4

α2
n

1+αn
= (2 + γ/s) log n. That is,

αn = 2(2 + γ/s)
log n

kn

(
1 +

√
1 +

1

2 + γ/s

kn
log n

)
∼ 2

√
(2 + γ/s)

log n

kn
,

since log n/kn → 0. Then, αn = o(1) = o(n/kn), so Eq. (20) is valid and turns into

∥∥∥m̂(n)(x)−m(x)
∥∥∥2
L2

= O

(
1

kn
+

(
(1 + αn)

kn
n

)γ/s

+ n−γ/s

)
= O

(
1

kn
+

(
kn
n

)γ/s
)
,

where we used that 1 + αn = O(1) and n−γ/s = o(
(
kn
n

)γ/s
) since kn → ∞.

Claim. Ifa, b, η > 0, thenf : (0,∞) → (0,∞);x 7→ a
x+bxη has a unique minimum atx0 =

(
a
ηb

)1/(η+1)
.

Furthermore, if k ∈ N minimises f on N, then k ∈ {⌊x0⌋ , ⌈x0⌉}.

Proof of Claim. Clearly f ∈ C1((0,∞)), and if ▷◁∈ {<,>,=}, then

f ′(x) = − a

x2
+ ηbxη−1 ▷◁ 0 ⇐⇒ x ▷◁ x0 :=

(
a

ηb

)1/(η+1)

.

Hence f has a unique minimum at x0, is decreasing on (0, x0), and increasing on (x0,∞). In particular, if

k ∈ N minimises f on N, then k ∈ {⌊x0⌋ , ⌈x0⌉}. ⋄

Applying this with a = 1, b = n−γ/s
, η = γ/s yields that the bound in Eq. (9) is optimised over (0,∞) by

κn := cn1/(1+s/γ)
,n ∈ N, where c =

(
s
γ

)s/(s+γ)
, and that an optimalkn ∈ N satisfieskn ∈ {⌊κn⌋ , ⌈κn⌉}.

Now suppose that kn ∼ c′n1/(1+s/γ)
for some c′ > 0. Then, log n ≪ kn, and kn = o(n), so Eq. (9) is valid

and turns into ∥∥∥m̂(n)(x)−m(x)
∥∥∥2
L2

= O
((

1/c′ + c′
γ/s
)
n
− 1

1+s/γ

)
= O

(
n
− 1

1+s/γ

)
,

which implies Eq. (10).
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Remark 5.8. The choice forαn we made in the proof above was optimal in the sense that the achieved asymptotic

bound Eq. (9) is a strict lower bound on the RHS of Eq. (20) for any choice of αn > 0.

We turn to the proof of Theorem 4.6. Recall that we assume X to be a centred Gaussian process taking values

in E = C([0, 1]), which satisfies Eq. (12). We again denote by H ⊂ E the reproducing kernel Hilbert space of

X .

Lemma 5.9. There is a c > 0 such that, for any x ∈ H,

px(δ) ≥ e−∥x∥2H/2 exp
(
−cδ−1/β

)
, δ > 0,

where ∥·∥H denotes the norm induced by the scalar product on H.

Proof. For t, s ∈ [0, 1], by Eq. (12),

E
[
|Xt −Xs|2

]
= K(t, t)− 2K(t, s) +K(s, s) ≤ |K(t, t)−K(t, s)|+ |K(s, t)−K(s, s)|

≤ 2c |t− s|2β .

Now the claim follows from Theorems 3.2 and 5.2 in [15].

Proof of Theorem 4.6. Assume k = 1 and S(X) = E. By Lemma 5.9, there are c1, c2 > 0 such that

px(δ) ≥ c1 exp
(
−c2δ

−1/β
)

for all δ > 0, and thus p−1
x (ε) ≤

(
1
c2
log c1

ε

)−β
for ε ∈ (0, 1). Hence,

and by Theorem 3.1, for any 0 < αn = o(n/kn),

∥∥∥m̂(n)(x)−m(x)
∥∥∥2
L2

= O

(
1

kn
+ log

(
n

(1 + αn)kn

)−γβ

+ n2 exp

(
−kn

4

α2
n

1 + αn

))
. (21)

Choose αn > 0 such that
kn
4

α2
n

1+αn
= 3 log n, that is,

αn = 6
log n

kn

(
1 +

√
1 +

3kn
log n

)
≤ 12

log n

kn

√
1 +

3kn
log n

≤ 12
log n

kn

{
2, kn ≤ log n√

4kn
logn , kn > log n

≤ 24

{
logn
kn

, kn ≤ log n

1, kn > log n.

In either case, αn = o(n/kn), so Eq. (21) is valid. If kn > log n, then

log

(
n

(1 + αn)kn

)
≥ log

(
n

25kn

)
= log

n

kn
− log 25 ∼ log

n

kn
.
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If kn ≤ log n, then

log

(
n

(1 + αn)kn

)
≥ log

(
n

kn + 24 log n

)
≥ log

(
n

(kn + 24) log n

)
= log n− log(kn + 24)− log log n ∼ log n− log kn

= log
n

kn
.

Hence, for any n ∈ N, Eq. (21) turns into

∥∥∥m̂(n)(x)−m(x)
∥∥∥2
L2

= O

(
1

kn
+ log

(
n

(1 + αn)kn

)−γβ

+
1

n

)

= O

(
1

kn
+ log

(
n

kn

)−γβ
)
,

where we used that
1
n = o( 1

kn
) since kn = o(n).

Claim. If η > 0, n ∈ N, then f : (0, n) → (0,∞) : x 7→ 1
x +

(
log n

x

)−η has a unique minimum at
x0 = x0(n) ∈ (0, n) with

x0 ∼
1

η
(log n)η+1 .

If k ∈ N ∩ (0, n) minimises f , then k ∈ {⌊x0⌋ , ⌈x0⌉}.

Proof of Claim. Clearly, f ∈ C1((0, n)), and limx↓0 f(x) = limx↑n f(x) = ∞, so f has at least one local

minimum, all of which must be zeros of f ′
. For x ∈ (0, n),

f ′(x) = 0 ⇐⇒ − 1

x2
+

η

x

(
log

n

x

)−(η+1)
= 0

⇐⇒ (ηx)1/(η+1) = log
n

x

⇐⇒ n = x exp
(
(ηx)1/(η+1)

)
⇐⇒ x0 = aW

(
(n/a)1/(1+η)

)1+η
,

where a = 1
η (1 + η)(1+η)

, and W denotes the Lambert-W function. For z > 0, w = W (z) is the unique

positive number for which wew = z. It is well-known and easy to show that W (z) ∼ log z, so

x0 ∼ a
(
log
(
(n/a)1/(1+η)

))1+η
=

1

η
(log n− log a)1+η ∼ 1

η
(log n)1+η.

Now suppose that k ∈ N ∩ (0, n) minimises f , and assume for contradiction that k ̸∈ {⌊x0⌋ , ⌈x0⌉},

say k ∈ (0, ⌊x0⌋). Then f(k) < f(⌊x0⌋), but since limx↓0 f(x) = ∞, this would imply that f has a local

minimum in (0, ⌊x0⌋), which contradicts the fact that x0 is the only local minimum. ⋄

Applying this with η = γβ yields that the bound in Eq. (13) is minimised over (0, n) by a unique κn that

satisfies κn ∼ 1
γβ (log n)1+γβ

, and that an optimal kn ∈ N satisfies kn ∈ {⌊κn⌋ , ⌈κn⌉}.
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Finally, suppose that there is a ∈ (0, 1) and K > 0 with (log n)γβ ≪ kn ≤ Kna
. Then, kn = o(n) and

log n
kn

= log n− log kn ≥ log n− a log n− logK ∼ (1− a) log n, so Eq. (13) turns into∥∥∥m̂(n)(x)−m(x)
∥∥∥2
L2

= O

(
1

kn
+ (log n)−γβ

)
= O

(
(log n)−γβ

)
.

Again, note that the choice for αn we made in the proof above was optimal in the sense that the achieved

asymptotic bound Eq. (13) is a lower bound on the RHS of Eq. (21) for any choice of αn > 0.
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